Blockade of airway hyperresponsiveness and inflammation in a murine model of asthma by a prodrug of cysteine, L-2-oxothiazolidine-4-carboxylic acid.

نویسندگان

  • Yong Chul Lee
  • Kyung Sun Lee
  • Seoung Ju Park
  • Hee Sun Park
  • Jae Sung Lim
  • Kwang-Hyun Park
  • Mie-Jae Im
  • Il-Whan Choi
  • Hern-Ku Lee
  • Uh-Hyun Kim
چکیده

Oxidative stress plays an important role in the pathogenesis of bronchial asthma. An excess production of reactive oxygen species (ROS) and defective endogenous antioxidant defense mechanisms may be present in asthma. Reduced glutathione (GSH) is one of the most important reducing agents against oxidant free radicals. A reducing agent, L-2-oxothiazolidine-4-carboxylic acid (OTC), a prodrug of cysteine, increases intracellular GSH. We have used a mouse model for asthma to determine effects of OTC on allergen-induced bronchial inflammation and airway hyper-responsiveness. The administration of OTC reduced bronchial inflammation and airway hyper-responsiveness. ROS generation in bronchoalveolar lavage fluids was increased by ovalbumin (OVA) inhalation, but this increase was diminished by administration of OTC. The increased IL-4, IL-5, IL-13, and eosinophil cationic protein levels in lungs after OVA inhalation were significantly reduced by the administration of OTC. In addition, the increased expression of ICAM-1, VCAM-1, RANTES, and eotaxin in lungs after OVA inhalation was significantly reduced by the administration of OTC. We also showed that the increased NF-kappaB levels in nuclear protein extracts of lung tissues at 72 h after OVA inhalation were decreased by the administration of OTC. These findings suggest that OTC may reduce airway inflammation and hyper-responsiveness through regulation of NF-kappaB activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A prodrug of cysteine, L-2-oxothiazolidine-4-carboxylic acid, regulates vascular permeability by reducing vascular endothelial growth factor expression in asthma.

Inflammation of the asthmatic airway is usually accompanied by increased vascular permeability and plasma exudation. Oxidative stress plays critical roles in airway inflammation. Although reactive oxygen species (ROS) are shown to cause vascular leakage, the mechanisms by which ROS induce increased vascular permeability are not clearly understood. We have used a murine model of asthma to evalua...

متن کامل

Tanshinone IIA attenuates ovalbumin-induced airway inflammation and hyperresponsiveness in a murine model of asthma

Objective(s): Tanshinone IIA (T. IIA), one of the most pharmacologically active components extracted from Salviae miltiorrhiza, has anti-inflammatory and antioxidant features. The aim of the present study is to investigate the benefit of T. IIA on asthma using a murine model of asthma induced by ovalbumin (OVA). Materials and Methods: Male BALB/c mice were used in the present study. The mice we...

متن کامل

L-2-Oxothiazolidine-4-Carboxylic Acid or α-Lipoic Acid Attenuates Airway Remodeling: Involvement of Nuclear Factor-κB (NF-κB), Nuclear Factor Erythroid 2p45-Related Factor-2 (Nrf2), and Hypoxia-Inducible Factor (HIF)

Reactive oxygen species (ROS) play a crucial role in the pathogenesis of acute and chronic respiratory diseases. Antioxidants have been found to ameliorate airway inflammation and hyperresponsiveness in animal models employing short-term exposure to allergen. However, little data are available on the effect of antioxidants on airway remodeling and signaling pathways in chronic asthma. In the pr...

متن کامل

Antioxidant down-regulates interleukin-18 expression in asthma.

An alteration in the balance between a T-helper type 2 cell (Th2) response and a Th1 response may predispose to the development of bronchial asthma. Interleukin-18 (IL-18) has an ability to promote both Th1 and Th2 responses, depending on the surrounding cytokine environment. Reactive oxygen species (ROS) play a crucial role in the pathogenesis of airway inflammation and hyperresponsiveness. Re...

متن کامل

The preventive effect of Brassica napus L. oil on pathophysiological changes of respiratory system in experimental asthmatic rat

Objective: Asthma is an airway complex disease defined by reversible airway narrowing and obstruction, chronic airway inflammation, airway hyperresponsiveness, and tissue remodeling. The purpose of this study was to determine the effect of Brassica napus L. (B. napus) on airway pathologic changes in a rat model of asthma. Materials and Methods: Twenty-four rats were divided into 4 groups: contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 18 15  شماره 

صفحات  -

تاریخ انتشار 2004